我们为什么要学习数学?

作者:山东积佳教育科技有限公司 发布时间:2018/9/29

当今社会,数学的发展,计算机技术的广泛应用,可以说数学的足迹已经遍及人类知识体系的全部领域。从卫星到核电站,高技术的高精度、高速度、高自动、高质量、高效率等特点,无不是通过数学模型和数学方法并借助计算机的控制来实现的。产品、工程的设计与制造,产品的质量控制,经济和科技中的预测和管理,信息处理,资源开发和环境保护,经济决策等,无不需要数学的应用。数学在现代社会中有许多出人意料的应用,在许多场合,它已经不再单纯是一种辅助性的工具,它已成为许多重大问题的关键性的思想与方法,由此产生的许多成果,又悄悄的遍布在我们身边,改变着我们的生活方式。可以说数学对现代社会已产生了深远的影响,我们生活在数学的时代。数学对社会发展的影响,一方面说明了数学在社会发展中的地位和作用,同时,也反映出在未来社会中,社会的主体——人在数学方面所应具备的素养和素质。

1、数学与军事、战争

军事与战争是人们所厌恶的,是人类追求和平的敌人。但是它却一直伴随着社会的发展,自从有了社会以来,战争一直连绵不断。而数学在军事与战争中也扮演了无法定义的角色。数学对武器的制造及改进起着很大的作用,16世纪后,许多数学家也是弹道学家,在第一次世界大战乃至第二次世界大战时,计算计算射击火力表一直是数学家的主要任务。数学在战争中发挥重要作用的另一个领域是密码破译,密码加密和破译完全是数学的工作。

2、数学与艺术

当你与从事音乐、美术等艺术的人交谈时,只要他们对数学有一定的认识和了解,他们会说,音乐、美术中蕴藏在着数学。绘画艺术中三维现实世界在二维平面上的真实再现,需要依据几何学中的透视理论,因此,艺术家们对透视理论进行了研究,提出了将几何原理应用于绘画的数学透视法。同时,对同一物体在不同平面上的投影的特征的思考,成为射影几何的出发点。

以分形几何学为理论基础的计算机图形学为艺术家的创作和想像提供了更广阔的空间。利用它创作出的作品是一些形态逼真、充满魅力的分形图形,如分形山脉、分形海岸线、分形云彩、分形湖泊、分形树林,这些作品所表现出来的精湛的技艺,令人赞叹不已。面对分形艺术的巨大冲击,一些美术学院的教授不得不在教案中编入一些分形的内容。不难预料,分形理论及其应用将进一步对绘画、雕塑、建筑设计、广告设计产生深远影响。

3、数学与生活

如果说自然科学科学领域和社会科学领域对数学的需求和百姓的生活还有一段距离的话,那么我们看一看在我们的日常生活中,是否也需要数学,数学到底在哪里?事实上,数学对整个社会发展的影响不仅仅局限在上述这些比较专门的领域中,数学在现代社会生产、生活中各个方面的应用越来越广泛,它已渗透到人们的日常生活、工作的方方面面,从每日的天气预报到个人的投资方式(购买股票、购房、保险),从旅游到房屋的布局和装修,到每天电视报纸等新闻媒介中带给人们的各种各样的信息,都与数学有着密切的联系。

衣、食、住、行是社会生活的基础,过去,人们追求的是吃饱、穿暖、实现小康。随着生活水平的提高,人们的目标是均衡的营养、设计新颖的服装、土地的合理利用、舒适的房屋等等,事实上,在日常生活中,就学、就业、住房、医疗、退休、养老等模式,都在发生变化,变得可选择性越来越强,变得越来越需要减少依赖,增强自主,需要百姓运用自己的头脑,分析批判,作出决策。在众多的选择面前,有人如鱼得水,有人无所适从,无论你是否习惯,是否能够接受,“降水概率”已经赫然与电视和报端。有人设想,不久的将来,新闻报道中每一条消息旁都会注明“真实概率”;电视节目的预告中,每个节目旁都会写上“可视度概率”;另外,还有西瓜成熟概率、火车正点概率、药方疗效概率、广告可靠概率等。总之,世间万物本来如此,人们只是借助于数学帮助恢复其本来面目。西方发达国家的人们体会最深的是机会与选择,申请助学金要选择类别;申请住房要选择房间大小;听课要选择教师、教室和时间;看病要选择医生;甚至考试内容、考试方式也都由你选择。不同的选择意味着不同的机会,风险大小来源于你的决策分析。这些决策的作出,需要我们以概率统计等数学知识来武装,人们有了这些数学知识,就可以认识到我们面临的许多问题的条件是变化的、结论不总是唯一的、结论不是绝对可靠的,实物的多样性是普遍的,而必然性、绝对性则是相对的、有条件的。

在选择中,人们常常考虑的是这样一类问题,即怎样才能达到“最近、最省时间、最短距离、最佳效益”等优化问题。寻求优化是人类的一种本能,一个没有受过任何教育的孩子也知道两点间的距离最短,而且不仅是人类,整个大自然都充斥着这一现象。在我们周围,优化问题几乎随处可见。例如,如何利用有限的空间储存或运送更多的货物;如何在激烈的市场竞争中调整商品的价格,薄利多销,获得最多利润;如何合理安排人员配置,使全员劳动生产率最高;如何使有限的生产资料得到最充分的利用;如何选择出行的最佳路线;等等。把这些问题抽象为一个理论问题,就是如何使系统在给定的情况下,达到最理想的效果。这就需要数学中的最优化理论。